Integrative “Omic” Analysis for Tamoxifen Sensitivity through Cell Based Models
نویسندگان
چکیده
It has long been observed that tamoxifen sensitivity varies among breast cancer patients. Further, ethnic differences of tamoxifen therapy between Caucasian and African American have also been reported. Since most studies have been focused on Caucasian people, we sought to comprehensively evaluate genetic variants related to tamoxifen therapy in African-derived samples. An integrative "omic" approach developed by our group was used to investigate relationships among endoxifen (an active metabolite of tamoxifen) sensitivity, SNP genotype, mRNA and microRNA expressions in 58 HapMap YRI lymphoblastoid cell lines. We identified 50 SNPs that associate with cellular sensitivity to endoxifen through their effects on 34 genes and 30 microRNA expression. Some of these findings are shared in both Caucasian and African samples, while others are unique in the African samples. Among gene/microRNA that were identified in both ethnic groups, the expression of TRAF1 is also correlated with tamoxifen sensitivity in a collection of 44 breast cancer cell lines. Further, knock-down TRAF1 and over-expression of hsa-let-7i confirmed the roles of hsa-let-7i and TRAF1 in increasing tamoxifen sensitivity in the ZR-75-1 breast cancer cell line. Our integrative omic analysis facilitated the discovery of pharmacogenomic biomarkers that potentially affect tamoxifen sensitivity.
منابع مشابه
Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
Integrative analyses of high-throughput 'omic data, such as DNA methylation, DNA copy number alteration, mRNA and protein expression levels, have created unprecedented opportunities to understand the molecular basis of human disease. In particular, integrative analyses have been the cornerstone in the study of cancer to determine molecular subtypes within a given cancer. As malignant tumors wit...
متن کاملUncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degrad...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملIntegrative Cell Formation and Layout Design in Cellular Manufacturing Systems
This paper proposes a new integrative view of manufacturing cell formation and both inter-cell and intra-cell layout problems. Cells formation and their popular bi-directional linear layout are determined simultaneously through a Dynamic Programming algorithm (with the objective of minimizing the inter-cell flow cost under a cell size constraint). This Dynamic Programming algorithm is implement...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014